Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components.

نویسندگان

  • John J Scarcelli
  • Susan Viggiano
  • Christine A Hodge
  • Catherine V Heath
  • David C Amberg
  • Charles N Cole
چکیده

Coordination of the multiple steps of mRNA biogenesis helps to ensure proper regulation of gene expression. The Saccharomyces cerevisiae DEAD-box protein Rat8p/Dbp5p is an essential mRNA export factor that functions at the nuclear pore complex (NPC) where it is thought to remodel mRNA/protein complexes during mRNA export. Rat8p also functions in translation termination and has been implicated in functioning during early transcription. We conducted a synthetic genetic array analysis (SGA) using a strain harboring the temperature-sensitive rat8-2 allele. Although RAT8 had been shown to interact genetically with >15 other genes, we identified >40 additional genes whose disruption in a rat8-2 background causes synthetic lethality or dramatically reduced growth. Included were five that encode components of P-bodies, sites of cytoplasmic mRNA turnover and storage. Wild-type Rat8p localizes to NPCs and diffusely throughout the cell but rat8-2p localized to cytoplasmic granules at nonpermissive temperature that are distinct from P-bodies. In some genetic backgrounds, these granules also contain poly(A)-binding protein, Pab1p, and additional mRNA export factors. Although these foci are distinct from P-bodies, the two merge under heat-stress conditions. We suggest that these granules reflect defective mRNP remodeling during mRNA export and during cytoplasmic mRNA metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export.

To identify Saccharomyces cerevisiae genes important for nucleocytoplasmic export of messenger RNA, we screened mutant strains to identify those in which poly(A)+ RNA accumulated in nuclei under nonpermissive conditions. We describe the identification of DBP5 as the gene defective in the strain carrying the rat8-1 allele (RAT = ribonucleic acid trafficking). Dbp5p/Rat8p, a previously uncharacte...

متن کامل

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

A genetic interaction occurs when the combination of two mutations leads to an unexpected phenotype. Screens for synthetic genetic interactions have been used extensively to identify genes whose products are functionally related. In particular, synthetic lethal genetic interactions often identify genes that buffer one another or impinge on the same essential pathway. For the yeast Saccharomyces...

متن کامل

Genetic Interaction Motif Finding by Expectation Maximization – a novel statistical framework for inferring gene modules from synthetic lethality

Synthetic lethality experiments identify pairs of genes with complementary function: two genes are synthetic lethal if each mutant is viable, but the double mutant combination is lethal. More direct functional associations may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. We describe an unsupervised algorithm, Genetic I...

متن کامل

Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network

Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 179 4  شماره 

صفحات  -

تاریخ انتشار 2008